Sample Paper (Mathematics)

Year 2020

Class 12th

(Topic-wise Break Up)

Topic	No.Of 1 Mark Questions	No.Of 2 Marks Questions	No.Of 4 Marks Questions	No of 6 Marks Questions	Total Marks
Relations and functions	02		02		10
Matrices and Determinants	01	01	01	01	13
Calculas		03	05	03	44
Vectors and Three Dimentional Geometry	01	01	02	01	17
Linear Programming		01	01		06
Probability		02		01	10
Total Questions	04	08	11	06	100Marks 29 Questions

- ❖ Note for Paper Setters:
- ❖ The sample question papers comprises of 29 Questions, divided into (04) four sections A, B,C,D.
- ❖ Section A comprises of Multiple Choice Questions from (Q.1 to Q.4) each of 1 Marks
- Section B comprises of 8 questions (Q 5 to Q. 12) each of 2 marks.
- ❖ Section C comprises of 11 Questions (Q 13 to Q23) each of 4 marks.
- ❖ Section D comprises of 6 Questions (Q24 to Q 29) each of 6 marks.

Subject: Mathematics. Class 12th. Max.Marks=100, Time: 3 hours.

Questions) 4Qx1M=4 marks Section A (Multiple Choice

Q.No.1) In the set A = $\{1,2,3,4,5\}$ a relation R defined by R= $\{(x,y): x,y \in A,x \le y\}$ then R is:

(a) Reflexive

(b) Symmetric

(c) Transitive

(d) Anti symmetric.

Q.2) If $f(x) = (a - x^n)^{1/n}$ then f(f(x)) =

(a) x

(b) a-x

(c) x^n

(d) $x^{1/n}$

Q.3) A and B are two square matrices such that AB=A and BA=B then A^2

(a) B

(b) A

(c) I

(d) 0

Q.4) If \vec{a} is a vector perpendicular to \vec{b} and \vec{c} then

(a) \vec{a} . $(\vec{b}x\vec{c})=0$

(b) $\vec{a}x(\vec{b}x\vec{c}) = 0$

(c) $\vec{a}x(\vec{b}+\vec{c})=0$

(d) $\vec{a} + (\vec{b} + \vec{c}) = 0$

Section B (very short answer type Question) 80x2M=16 marks

Q.5) Define Symmetric and skew symmetric Matrices.

Q.6) Evaluate $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$

Q.7) Evaluate $\int_2^3 \frac{1}{x^2-1} dx$.

Q.8) Define Order and Degree of a differential Equation.

Q.9) Find the projection of \vec{a} on \vec{b} where $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Q.10) Define the term Optimization.

Q.11) $p(A) = \frac{6}{11}$ $p(B) = \frac{5}{11}$ $p(A \cup B) = \frac{7}{11}$, find $p(B \setminus A)$

O.12) A die is rolled, if the outcome is an even number, what is the probability that it is a prime number.

Sec C (Short Answer Type Questions) 11Qx4M=44 marks

Q.13) Let $f:X \to Y$ be invertible function, show that f has unique inverse.

Q.14) Write in the simplest form $\tan^{-1}(\frac{\cos x - \sin x}{\cos x + \sin x})$

Q.15) Find the inverse of a matrix A if

$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

- Q.16) At what point of the curve $y=x^2$ does the tangent make an angle 45° with the x-axis.
- Q.17) Using differentials find the approximate value up to 3 decimal places of $26^{1/3}$.

Q.18) Prove that
$$\int \sqrt{x^2 + a^2} dx = x \frac{\sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \log|x + \sqrt{x^2 + a^2}| + c$$

- Q.19) Prove that $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$
- Q.20) If $y=\cos^{-1} x$, Find $\frac{d^2y}{dx^2}$ in terms of y alone.
- Q.21) If $\vec{a}=2\hat{\imath}+2\hat{\jmath}+3\hat{k}$, $\vec{b}=-\hat{\imath}+2\hat{\jmath}+\hat{k}$ and $\vec{c}=3\hat{\imath}+\hat{\jmath}$ are such that $\vec{a}+\lambda\vec{b}$ is perpendicular to \vec{c} , then find the value of λ .
- Q.22) Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x+3y+4z-1=0
- Q.23) Solve graphically,

Minimize or Maximize Z = 5x+10y

Subject to:

$$x+2y \le 120$$
,

$$x+y \ge 60$$
.

$$x+y \ge 60, \quad x-2y \ge 0, \quad x,y \ge 0$$

Section D (Long Answer Type Questions) 6Qx6M=36marks

Q.24) Using the properties of determinants, prove that

$$\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2$$

(OR)

Solve the system of equations;

$$2x+3y+3z=5$$
,

$$x-2y+z=-4$$

$$3x-y-2z=3$$

Q.25) If
$$y=(x\cos x)^x + (x\sin x)^{1/x}$$
, Find $\frac{dy}{dx}$

(OR)

Find the values of 'a' and 'b' such that the function defined by:

$$f(x) = \begin{cases} 5, & x \le 2 \\ ax + b, & 2 < x < 10 \text{ is a continues function.} \\ 21, & x \ge 10 \end{cases}$$

Q.26) Evaluate
$$\int \frac{Sin^8x - Cos^8x}{1 - Sin^2x Cos^2x} dx$$

(OR)

Find the area of the region enclosed by the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Q.27) Solve the Linear differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$

(OR)

Find the equation of the curve passing through the point (0,0) and whose differential Equation is $\frac{dy}{dx} = e^x \text{Sinx}$.

Q.28) Find the vector equation of the line passing through (1,2,3) and parallel to the planes \vec{r} . $(\hat{\imath} - \hat{\jmath} + 2\hat{k}) = 5$ and

$$\vec{r}.(3\hat{\imath}+\hat{\jmath}+\hat{k})=6$$

(OR)

Find the shortest distance between the lines l_1 and l_2 whose vector equations are:

$$\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} + \hat{\jmath} + \widehat{k})$$
 and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \widehat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\widehat{k})$

Q.29) From a lot of 16 bulbs, which include 4 defective bulbs, a sample of 3 bulbs is drawn at random without replacement. Find the probability distribution of no. of defective bulbs drawn.

(OR)

A die is thrown 6 times. If "getting an odd number" is a success, what is the probability of

(i) 5 successes

(ii) at least 5 successes

(iii) at most 5 successes